СИСТЕМЫ ВПРЫСКА БЕНЗИНА — KE-JETRONIK (3)

2. СИСТЕМА ВПРЫСКА «KE-JETRONIK» («КЕ-Джетроник») (1)

Система впрыска «KE-Jetronic» это механическая система постоянного впрыска топлива, подобная системе «K-Jetronic», но с электронным блоком управления (E-Elektronik). В системе «KE-Jetronic» регулятор управляющего давления заменен электрогидравлическим регулятором.

Кроме этого, система имеет: установленный на рычаге расходомера воздуха потенциометр (реостатный датчик) и выключатель положения дроссельной заслонки. Потенциометр сообщает электрическими сигналами в электронный блок управления информацию о положении напорного диска расходомера воздуха. Положение напорного диска определяется расходом воздуха (разрежением во впускном трубопроводе, положением дроссельной заслонки, нагрузкой двигателя).

Выключатель положения дроссельной заслонки может информировать электронный блок управления: о крайних положениях дроссельной заслонки — полностью открыта или закрыта (в этом случае выключатель называется концевым); о всех положениях дроссельной заслонки; о всех положениях и о скорости ее открытия и закрытия.

Система «KE-Jetronic» является дальнейшим развитием системы «К-Jetronic». Она более сложная, но позволяет лучше оптимизировать дозирование топлива. Идеальное дозирование это топливная экономичность, наименьшая токсичность отработавших газов, наилучшая динамика. К сожалению, совместить все три эти составляющие не удается. Поэтому, к примеру, о топливной экономичности заботятся при всех частичных нагрузках, а при полной нагрузке — только о наилучших динамических показателях.

2.1. ПРИНЦИП ДЕЙСТВИЯ, ГЛАВНАЯ ДОЗИРУЮЩАЯ СИСТЕМА И СИСТЕМА ХОЛОСТОГО ХОДА

Топливо под давлением поступает к форсункам 11 (рис. 26), установленным перед впускными клапанами. Форсунки распыливают топливо, количество которого определяется его давлением в зависимости от нагрузки (от разрежения во впускном коллекторе) и от температуры охлаждающей жидкости.

Регулирование количества топлива обеспечивается дозатором-распределителем 5, управляемым расходомером воздуха 6 и электрогидравлическим регулятором управляющего давления 9, управляемым электронным блоком управления 16 по сигналам датчика температуры охлаждающей жидкости двигателя 13, выключателя положения дроссельной заслонки 7 и датчика частоты вращения (числа оборотов) коленчатого вала двигателя (датчика начала отсчета). На схеме (см. рис. 14) условно показано, что сигналы (импульсы) частоты вращения берутся от датчика-распределителя зажигания 8. Как отмечалось выше, эти сигналы могут браться также от катушки зажигания или от коммутатора. В настоящее время для этой цели применяются индуктивные датчики. Последние закрепляются на картере маховика, а их «чувствительная» часть располагается над зубчатым венцом маховика. При прохождении зуба мимо датчика в его обмотке генерируется ЭДС. Применяются датчики и на основе эффекта Холла, которые лучше индуктивных, но сложнее и дороже.

Система впрыска (рис. 26) работает следующим образом. Электронасос 2 забирает топливо из бака и подает его под давлением к дозатору-распределителю топлива 5 через топливный фильтр 3 и накопитель 4.

Топливо поступает в верхние камеры дифференциальных клапанов дозатора — распределителя под давлением, которое изменяется регулятором 10 в зависимости от положения плунжера распределителя. Количество топлива, поступающего к рабочим форсункам II, регулируется диафрагмой дифференциальных клапанов, прижимаемой управляющим давлением (противодавлением) к выходным отверстиям (трубкам форсунок).

В отличие от системы «K-Jetronic», управляющее давление к верхнему торцу плунжера распределителя в системе «KE-Jetronic» не подводится.

Регулятор управляющего давления 9 представляет собой электроклапан, управляемый электронным блоком 16. При работе главной дозирующей системы меняется положение биметаллической пластины. При увеличении частоты вращения коленчатого вала (ускорение) верх пластины отклоняется вправо, отверстие подвода топлива к регулятору прикрывается. При уменьшении частоты вращения коленчатого вала (замедление) верх пластины отклоняется влево, отверстие подвода топлива к регулятору увеличивается. При равномерной работе двигателя (постоянной частоте вращения коленчатого вала) пластина находится в выпрямленном состоянии.

Потенциометр напорного диска и выключатель положения дроссельной заслонки передают в электронный блок управления информацию о текущей нагрузке двигателя и о «поведении» дроссельной заслонки. В свою очередь, электронный блок управления через электрогидравлический регулятор управляющего давления корректирует воздействие перемещений напорного диска на плунжер распределителя. Например, при резком нажатии на педаль «газа», («взаимосвязь» открытия дроссельной заслонки, перемещения напорного диска и роста частоты вращения коленчатого вала (см. рис. 3) электронный блок управления различает, ускорение ли это движения автомобиля или просто увеличение частоты вращения коленчатого вала двигателя на холостом ходу.

При полной нагрузке сигнал от выключателя положения дроссельной заслонки поступает в электронный блок управления, последний через регулятор управляющего давления дозатора-распределителя обогащает смесь.

Система холостого хода, представленная на рис. 26, почти не отличается от системы холостого хода «K-Jetronic». Параллельно каналу дроссельной заслонки идут еще два воздушных канала. В одном установлен конический винт регулировки холостого хода (винт количества), которым поддерживается минимальное разрежение в расходомере воздуха 6 под диском, и обеспечивается работа двигателя на холостом ходу. Клапан дополнительной подачи воздуха 8 работает при холодном пуске и прогреве двигателя аналогично системе «K-Jetronic».

Рис. 26. Схема системы впрыска «KE-Jetronic»:
1 — топливный бак, 2 — топливный насос, 3 — топливный фильтр, 4 — накопитель топлива, 5 — дозатор-распределитель количества топлива, б — расходомер воздуха, 7 — выключатель положения дроссельной заслонки, 8 — клапан дополнительной подачи воздуха, 9 — электрогидравлический регулятор управляющего давления (противодавления), 10 — регулятор давления топлива в системе, 11 — форсунка (инжектор), 12 — пусковая электромагнитная форсунка, 13 — датчик температуры охлаждающей жидкости, 14 — термореле, 15 — датчик-распределитель, 16 — электронный блок управления.
Каналы: А — подвод топлива (давление системы), В — слив топлива в бак, С — канал управляющего давления (в дозаторе-распределителе), D — канал регулятора давления, Е — подвод топлива к форсункам, F — подвод топлива к пусковой электромагнитной форсунке

2.2. СИСТЕМА ПУСКА

Электронасос 2 (см. рис. 26) при пуске мгновенно создает давление в системе. В течение определенного времени, зависящего от температуры охлаждающей жидкости, пусковая форсунка 12 распыляет топливо во впускной трубопровод, что обеспечивает обогащение смеси и надежный запуск холодного двигателя. Время работы пусковой форсунки определяет также, как и в системе «K-Jetronic», термореле 14.

Клапан 8 открывает доступ во впускной трубопровод добавочному воздуху, обеспечивая тем самым увеличение частоты вращения коленчатого вала на холостом ходу при прогреве двигателя.

Вместо клапана дополнительной подачи воздуха, (см. рис. 12), или параллельно с ним могут быть установлены более сложные устройства, например, электромагнитный регулятор (клапан) с электронным управлением. Если клапаны добавочного воздуха с подогревом работают «сами по себе» или по усредненной программе без обратной связи, то электромагнитные регуляторы управляются электронным блоком. Электронный блок, получая текущую информацию о частоте вращения коленчатого вала двигателя, корректирует ее, воздействуя на электромагнитный регулятор холостого хода, работающий на всех температурных режимах двигателя.

Обогащение смеси у холодного двигателя осуществляется регулятором управляющего давления 9 (см. рис. 26), который уменьшает противодавление в нижних камерах дифференциальных клапанов, при этом биметаллическая пластина регулятора отклоняется вправо. Обогащение смеси прекращается по сигналу датчика температуры охлаждающей жидкости 13. Датчик температуры охлаждающей жидкости по внешнему виду похож на термореле (тепловое реле времени), управляющее работой пусковой форсунки. Однако, принцип его действия совершенно иной. Если термореле — это простой термоэлектрический выключатель, то датчик температуры двигателя — это термочувствительное сопротивление с отрицательным температурным коэффициентом. Отрицательный температурный коэффициент — это обратная зависимость между температурой нагревай сопротивлением датчика. Это означает, что у холодного датчика сопротивление — максимальное, а по мере нагрева его сопротивление уменьшается.

Электронный блок управления получает сигнал о текущей температуре двигателя в виде величины сопротивления датчика. На основании этого блок выдает соответствующую команду на электрогидравлический регулятор управляющего давления, который изменяет это управляющее давление и тем самым — состав смеси.

2.3. ДОЗАТОР-РАСПРЕДЕЛИТЕЛЬ, РЕГУЛЯТОР УПРАВЛЯЮЩЕГО ДАВЛЕНИЯ, РЕГУЛЯТОР ДАВЛЕНИЯ ТОПЛИВА В СИСТЕМЕ

Принципиальное отличие дозатора-распределителя «KE-Jetronic» от «K-Jetronic» в том, что: уже нет необходимости устанавливать регулятор управляющего давления на блоке цилиндров двигателя и подводить к нему вакуум, он встроен непосредственно в дозатор-распределитель (рис. 28); управляющее давление подводится не к плунжеру распределителя сверху, а в дифференциальный клапан снизу. Кроме этого: над плунжером устанавливается пружина, которая предотвращает втягивание плунжера вверх под действием разрежения при охлаждении дозатора-распределителя после остановки двигателя (встречаются варианты системы «K-Jetronic» с пружиной над плунжером); плунжер в крайнем нижнем положении опирается не на ролик рычага, как показано на рис. 26, а на внутренний кольцевой выступ в нижней части гильзы распределителя. В системе «K-Jetronic» при снятии дозатора-распределителя плунжер просто выпадает вниз из гильзы.

Рис. 28. Дозатор-распределитель и регулятор давления система впрыска «KE-Jetronic»:
1 — электрогидравлический регулятор управляющего давления, 2 — обмотка клапана, 3 — биметаллическая пластина электроклапана, 4 — дифференциальный клапан, 5 — гильза распределителя, б — плунжер распределителя, 7 — регулятор давления топлива в системе.
Каналы: А — подвод топлива (давление системы), В — слив топлива в бак, С — канал управляющего давления, D — канал регулятора давления, Е — подвод топлива к форсункам впрыска, F — подвод топлива к пусковой электромагнитной форсунке

В верхние камеры дифференциальных клапанов (см. рис. 28) подводится рабочее давление системы, оно же «заторможенное» демпфирующим дросселем действует над плунжером распределителя. В нижних камерах присутствует давление управления.

Регулятор 10 давления топлива в системе (см. рис. 7, 26, 28) не только устанавливает диапазон изменения давления в системе питания, но и регулирует дифференциальное давление (разность давлений между верхними и нижними камерами дифференциальных клапанов).

Электрогидравлический регулятор управляющего давления изменяет давление в нижних камерах дифференциальных клапанов в зависимости от режима работы двигателя (давления струи топлива на пластину) и от вырабатываемого соответственно этому режиму сигнала (команды) электронного блока управления. Благодаря этому изменяется доза топлива, подводимого к рабочим форсункам.

При постоянной частоте вращения коленчатого вал двигателя, как отмечалось, биметаллическая пластина находится в положении показанном на рис. 29, а.

При снижении частоты вращения коленчатого вала или при принудительном холостом ходе (торможение двигателем), когда дроссельная заслонка закрыта, а частота вращения коленчатого вала более 1700 об/мин, по сигналу датчика положения дроссельной заслонки электронным блоком управления подается команда регулятору управляющего давления, который полностью открывается, (см. рис. 29, б). В нижних камерах дифференциальных клапанов создается давление равное давлению подачи топлива. Поступление топлива к рабочим форсункам резко сокращается.

При увеличении частоты вращения коленчатого вала при открытии дроссельной заслонки происходит обогащение смеси путем снижения управляющего давления регулятором, (см. рис. 29, в). При этом воздействие электронного блока управления на регулятор определяется сигналами от потенциометра напорного диска и датчика дроссельной заслонки. Последний сообщает о положении дроссельной заслонки и скорости ее открытия. При системе «K-Jetronic» обогащение при быстром открытии дроссельной заслонки осуществлялось только за счет быстрого перемещения напорного диска.

Рис. 29. Режимы работы дозатора-распределителя:
а — нормальная (с постоянной частотой вращения коленчатого вала) работа двигателя, б — снижение частоты вращения коленчатого вала, в — пуск холодного двигателя, увеличение частоты вращения коленчатого вала.
Каналы: А — подвод топлива, С — подвод управляющего давления в нижнюю камеру дифференциального клапана, D — каналы регулятора давления в системе, Е — подвод топлива к форсункам впрыска, F — подвод топлива к пусковой электромагнитной форсунке

Обогащение смеси при холодном пуске и прогреве происходит в соответствии с сигналами датчика температуры двигателя по цепочке: датчик (сигнал) — электронный блок управления (команда) — регулятор управляющего давления (изгиб пластины) — дифференциальные клапаны (прогиб вниз диафрагмы) (см. рис. 29, в).

Обогащение смеси при полной нагрузке двигателя происходит, как отмечалось, по сигналу от датчика дроссельной заслонки.

2.4. ЛЯМБДА-РЕГУЛИРОВАНИЕ

На части автомобилей для получения более рационального дозирования топлива применяется обратная связь — от отработавших газов — к составу смеси. При этом в электронный блок управления подаются сигналы от лямбда-зонда или датчика кислорода (фиксируется свободный кислород), размещенного в выпускном трубопроводе двигателя.

Сигнал лямбда-зонда регистрируется электронным блоком управления и преобразуется в команду для регулятора управляющего давления, который изменяет давление управления и тем самым обогащает или обедняет смесь.

Датчики кислорода работают обычно в диапазоне температур 350-900°С. Принцип действия применяемых датчиков различный.

Циркониевый датчик (используется керамический элемент на основе двуокиси циркония Zr02, покрытый платиной) — гальванический источник тока, меняющий напряжение в зависимости от температуры и наличия кислорода в окружающей среде. Циркониевые датчики, формируют (создают) электрический сигнал, и являются наиболее распространенными.

Титановые датчики (используется двуокись титана ТiO2 ) применяются реже и представляют собой резисторы, сопротивление которых меняется в зависимости от температуры и наличия кислорода в окружающей среде. Можно сказать, что эти датчики в принципе работают также, как и датчики температуры двигателя.

Лямбда-зонды применяются обогреваемые и не обогреваемые. Обогреваемые зонды, как правило, находятся несколько дальше от выпускного коллектора в выпускном трубопроводе. Без обогрева они достигали бы своей рабочей температуры при пуске двигателя с задержкой. Главная же цель электрического обогрева зондов — включение их в работу, когда температура, контактирующих с ними отработавших газов ниже 350°С.

При помощи датчиков концентрации кислорода в отработавших газах удается оптимизировать состав рабочей смеси только по токсичности выхлопа при определенных режимах работы двигателя. Применяются эти датчики, как правило, совместно с нейтрализаторами отработавших газов.

2.5. ЭЛЕКТРИЧЕСКАЯ СХЕМА СИСТЕМЫ ВПРЫСКА

Электрическая схема системы «KE-Jetronic» имеет сходство со схемой системы «K-Jetronic», (см. рис. 14-16). Основное отличие связано с электронным управлением. На рис. 30 представлен один из вариантов электросхемы системы впрыска топлива «KE-Jetronic».
Рис. 30. Электрическая схема системы впрыска «KE-Jetronic»:
1 — управляющее реле, 2 — клапан добавочного воздуха, 3 — топливный насос, 4 — пусковая форсунка, 5 — выключатель дроссельной заслонки, 6 — реле перегрузки, 7 — регулятор холостого хода, 8 — расходомер воздуха, 9 — электрогидравлический регулятор управляющего давления, 10 — выключатель ПХХ, 11 — датчик температуры охлаждающей жидкости.
Клеммы: 15 «+» после включения зажигания, 30 «+» аккумуляторная батарея, 50 «+» стартер, TD — импульсы зажигания, 1 (выключатель дроссельной заслонки) — полная нагрузка, 2 — холостой ход


[ОГЛАВЛЕНИЕ] | [Предыдущая страница] | [Следующая страница]


Добавить комментарий

Ваш адрес email не будет опубликован.